Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mov Disord ; 37(1): 80-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637165

RESUMEN

BACKGROUND: The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. OBJECTIVES: We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. METHODS: Using two-dimensional and three-dimensional models of patients' derived neurons we recapitulated PD-related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. RESULTS: PD patient-derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2-hydroxypropyl-ß-cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient-specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. CONCLUSION: We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient-derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Animales , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Organoides/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fenotipo
2.
Sci Rep ; 11(1): 21946, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754035

RESUMEN

Parkinson's disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the alpha-synuclein protein causing an autosomal-dominant form of PD. There are limited studies assessing pathogenic SNCA mutations in patient-derived isogenic cell models. Here we provide a functional assessment of dopaminergic neurons derived from a patient harbouring the p.A30P SNCA mutation. Using two clonal gene-corrected isogenic cell lines we identified image-based phenotypes showing impaired neuritic processes. The pathological neurons displayed impaired neuronal activity, reduced mitochondrial respiration, an energy deficit, vulnerability to rotenone, and transcriptional alterations in lipid metabolism. Our data describes for the first time the mutation-only effect of the p.A30P SNCA mutation on neuronal function, supporting the use of isogenic cell lines in identifying image-based pathological phenotypes that can serve as an entry point for future disease-modifying compound screenings and drug discovery strategies.


Asunto(s)
Neuronas Dopaminérgicas/citología , Mutación , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , Línea Celular , Neuronas Dopaminérgicas/metabolismo , Humanos , Mitocondrias , Enfermedad de Parkinson/genética
3.
Sci Rep ; 11(1): 1439, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446877

RESUMEN

Patient-derived cellular models become an increasingly powerful tool to model human diseases for precision medicine approaches. The identification of robust cellular disease phenotypes in these models paved the way towards high throughput screenings (HTS) including the implementation of laboratory advanced automation. However, maintenance and expansion of cells for HTS remains largely manual work. Here, we describe an integrated, complex automated platform for HTS in a translational research setting also designed for maintenance and expansion of different cell types. The comprehensive design allows automation of all cultivation steps and is flexible for development of methods for variable cell types. We demonstrate protocols for controlled cell seeding, splitting and expansion of human fibroblasts, induced pluripotent stem cells (iPSC), and neural progenitor cells (NPC) that allow for subsequent differentiation into different cell types and image-based multiparametric screening. Furthermore, we provide automated protocols for neuronal differentiation of NPC in 2D culture and 3D midbrain organoids for HTS. The flexibility of this multitask platform makes it an ideal solution for translational research settings involving experiments on different patient-derived cellular models for precision medicine.


Asunto(s)
Automatización de Laboratorios , Técnicas de Cultivo de Célula , Modelos Biológicos , Organoides/citología , Medicina de Precisión , Evaluación Preclínica de Medicamentos , Humanos
4.
Cells ; 9(9)2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927687

RESUMEN

The generation of isogenic induced pluripotent stem cell (iPSC) lines using CRISPR-Cas9 technology is a technically challenging, time-consuming process with variable efficiency. Here we use fluorescence-activated cell sorting (FACS) to sort biallelic CRISPR-Cas9 edited single-cell iPSC clones into high-throughput 96-well microtiter plates. We used high-content screening (HCS) technology and generated an in-house developed algorithm to select the correctly edited isogenic clones for continued expansion and validation. In our model we have gene-corrected the iPSCs of a Parkinson's disease (PD) patient carrying the autosomal dominantly inherited heterozygous c.88G>C mutation in the SNCA gene, which leads to the pathogenic p.A30P form of the alpha-synuclein protein. Undertaking a PCR restriction-digest mediated clonal selection strategy prior to sequencing, we were able to post-sort validate each isogenic clone using a quadruple screening strategy prior to generating footprint-free isogenic iPSC lines, retaining a normal molecular karyotype, pluripotency and three germ-layer differentiation potential. Directed differentiation into midbrain dopaminergic neurons revealed that SNCA expression is reduced in the gene-corrected clones, which was validated by a reduction at the alpha-synuclein protein level. The generation of single-cell isogenic clones facilitates new insights in the role of alpha-synuclein in PD and furthermore is applicable across patient-derived disease models.


Asunto(s)
Células Clonales/citología , Células Madre Pluripotentes Inducidas/citología , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Diferenciación Celular , Línea Celular , Humanos , Enfermedad de Parkinson/patología
5.
Sci Transl Med ; 12(560)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908004

RESUMEN

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.


Asunto(s)
Enfermedad de Parkinson , Neuronas Dopaminérgicas , Exones/genética , Humanos , Mutación/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Empalme del ARN
6.
Stem Cell Res ; 48: 101951, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32798915

RESUMEN

Dermal fibroblasts from a patient carrying a heterozygous c.88G > C mutation in the SNCA gene that encodes alpha-synuclein were reprogrammed to pluripotency by retroviruses. This pathogenic mutation generates the p.A30P form of the alpha-synuclein protein leading to autosomal dominantly inherited Parkinson's disease (PD). Two clonal iPS cell lines were generated (A30P-3 and A30P-4) and characterised by validating the silencing of viral transgenes, the expression of endogenous pluripotency genes, directed differentiation into three germ layers in-vitro and a stable molecular genotype. These iPSC lines will serve as a valuable resource in determining the role of the p.A30P SNCA mutation in PD pathogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Línea Celular , Humanos , Mutación/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
7.
Stem Cell Res ; 45: 101776, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32387898

RESUMEN

Fibroblasts were obtained from a 76 year-old man diagnosed with Parkinson's disease (PD). The disease is caused by a heterozygous p.D620N mutation in VPS35. Induced pluripotent stem cells (iPSCs) were generated using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific). The presence of the c.1858G > A base exchange in exon 15 of VPS35 was confirmed by Sanger sequencing. The iPSCs are free of genomically integrated reprogramming genes, express pluripotency markers, display in vitro differentiation potential to the three germ layers and have karyotypic integrity. Our iPSC line will be useful for studying the impact of the p.D620N mutation in VPS35 in vitro.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Anciano , Diferenciación Celular , Heterocigoto , Humanos , Masculino , Mutación , Enfermedad de Parkinson/genética , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...